Identification of rotor bearing parameters using vibration response data in a turbocharger rotor

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 402

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JCARME-9-1_011

تاریخ نمایه سازی: 1 مهر 1398

چکیده مقاله:

Turbochargers are most widely used in automotive, marine and locomotive applications with diesel engines. To increase the engine performance nowadays, in aerospace applications also turbochargers are used. Mostly the turbocharger rotors are commonly supported over the fluid film bearings. With the operation, lubricant properties continuously alter leading to different load bearing capacities. This paper deals with the diagnostic approach for prediction of shaft unbalance and the bearing parameters using the measured frequency responses at the bearing locations. After validating the natural frequencies of the rotor finite element model with experimental analysis, the response histories of the rotor are recorded. The influence of the parameters such as bearing clearance, oil viscosity and casing stiffness on the unbalance response is studied. By considering three levels each for shaft unbalance and oil viscosity, the output data in terms of four statistical parameters of equivalent Hilbert envelopes in the frequency domain are measured. The data is inversely trained using Radial Basis Function (RBF) neural network model to predict the unbalance and oil viscosity indices from given output response characteristics. The outputs of the RBF model are validated thoroughly. This approach finds changes in the rotor bearing parameters from the measured responses in a dynamic manner. The results indicate that there is an appreciable effect of lubricant viscosity at two different temperatures compared to other parameters within the operating speed range. The identification methodology using the neural network is quite fast and reliable

نویسندگان

RAJASEKHARA REDDY MUTRA

DEPARTMENT OF MECHANICAL ENGINEERING,NATIONAL INSTITUTE OF TECHNOLOGY (NIT), ROURKELA, ODISHA, INDIA

Srinivas J

Department of Mechanical Engineering, National Institute of Technology (NIT), Rourkela, odisha, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • N.F. Sakellaridis, S.I. Raptotasios, A.K. Antonopoulos, G.C. Mavropoulos, D.T. Hountalas, ...
  • A.A. Kozhenkov, R.S. Deitch, Three-Dimensional Finite Element Simulation of Nonlinear ...
  • Hao Zhang, Zhanqun Shi, Shunxin Zhang, Fengshou Gu, Andrew Ball, ...
  • L. Wang, G. Bin, X. Li, X. Zhang, Effects of ...
  • B. Schweizer, Dynamics and stability of turbocharger rotors , Arch ...
  • K. Gjika, L. San Andrés, G.D. Larue, Nonlinear Dynamic Behavior ...
  • J.R. Serrano, P. Olmeda, A. Tiseira, L.M. García-Cuevas, A. Lefebvre, ...
  • M. Deligant, P. Podevin, G. Descombes, Experimental identification of turbocharger ...
  • A. Wang, W. Yao, K. He, G. Meng, X. Cheng, ...
  • J. Yao, L. Liu, F. Yang, F. Scarpa, J. Gao, ...
  • A. von Flotow, M. Mercadal, P. Tappert, Health monitoring and ...
  • M. Holzenkamp, J.R. Kolodziej, S. Boedo, S. Delmontte, Seeded Fault ...
  • N.G. Pantelelis, A.E. Kanarachos, N. Gotzias, Neural networks and simple ...
  • T.H. Machado, R.U. Mendes, K.L. Cavalca, Directional frequency response applied ...
  • N.H. Chandra, A.S. Sekhar, Wavelet transform based estimation of modal ...
  • A. Vencl, A. Rac, Diesel engine crankshaft journal bearings failures: ...
  • T.H. Machado, and K.L. Cavalca, Modeling of hydrodynamic bearing wear ...
  • S. Chatterton, P. Pennacchi, A. Vania, Electrical pitting of tilting-pad ...
  • L. Barelli, G. Bidini, F. Bonucci, Diagnosis methodology for the ...
  • J.R. Serrano, C. Guardiola, V. Dolz, M.A. López, F. Bouffaud, ...
  • Y. Li, F. Liang, Y. Zhou, S. Ding, F. Du, ...
  • L. Shao, J. Zhu, X. Meng, X. Wei, X. Ma, ...
  • P. Novotný, P. Škara, J. Hliník, The effective computational model ...
  • W. Li, Y. Yang, D. Sheng, J. Chen, A novel ...
  • M. Dakel, S. Baguet, R. Dufour, Nonlinear dynamics of a ...
  • P. Konar, and P. Chattopadhyay, Multi-class fault diagnosis of induction ...
  • Viscopedia | A free encyclopedia for viscosity. http://www.viscopedia.com/ (accessed September ...
  • S.G. Mattson, and S.M. Pandit, Statistical moments of autoregressive model ...
  • R. Rojas, Neural Networks, Springer Berlin Heidelberg, Berlin, Heidelberg, (1996). ...
  • نمایش کامل مراجع