STCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach

سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 533

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-6-2_004

تاریخ نمایه سازی: 31 شهریور 1398

چکیده مقاله:

Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to the sink. Spatio-temporal CS (STCS), with the use of spatial and temporal correlation of sensor readings, can increase the compression rate in WSNs, thereby reducing the cost of communication. In this paper, a new method of STCS technique based on the geographic adaptive fidelity (GAF) protocol is proposed which can effectively reduce the communication cost and energy consumption in WSNs. In the proposed method, temporal data is obtained from random selection of temporal readings of cluster head (CH) sensors located in virtual cells in the clustered sensors area and spatial data will be formed from the data readings of CHs located on the routes. Accordingly, a new structure of sensing matrix will be created. The results show that the proposed method as compared to the method proposed in [29], which is the most similar method in the literature, reduces energy consumption in the range of 22% to 43% in various scenarios which were implemented based on the number of required measurements at the sink (M) and the number of measurements in the routes (m_r).

نویسندگان

Mohammad Ghaderi

Department of Electrical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran

Vahid Tabataba Vakili

Iran University of Science and Technology

Mansour Sheikhan

Department of Electrical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H. Zheng, F. Yang, X. Tian, X. Gan, X. Wang, ...
  • J. Haupt, W. Bajwa, M. Rabbat, and R. Nowak, Compressed ...
  • S. Li, L. Xu, and X. Wang, Compressed sensing signal ...
  • B. Ali, N. Pissinou, and K. Makki, Identification and validation ...
  • O. Younis and S. Fahmy, HEED: A hybrid, energy-efficient, distributed ...
  • N. A. Pantazis and D. D. Vergados, A survey on ...
  • S. Wang and Z. Chen, LCM: A link-aware clustering mechanism ...
  • D. Bhattacharyya, T. H. Kim, and S. Pal, A comparative ...
  • M. Bhuiyan, G. Wang, and A. Vasilakos, Local area predictionbased ...
  • E. Xu, Z. Ding, and S. Dasgupta, Target tracking and ...
  • A. Vempaty, O. Ozdemir, K. Agrawal, H. Chen, and P. ...
  • Y. Xu, J. Heidemann, and D. Estrin, Geography-informed energy conservation ...
  • F. Shang and J. Liu, Multi-hop topology control algorithm for ...
  • D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, ...
  • E. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: ...
  • E. Candes and M. Wakin, An introduction to compressive sampling, ...
  • M. B. Wakin, M. F. Duarte, S. Sarvotham, D. Baron, ...
  • E. Candes and T. Tao, Near-optimal signal recovery from random ...
  • E. Candes and T. Tao, Decoding by linear programming, IEEE ...
  • E. Candes, J. Romberg, and T. Tao, Stable signal recovery ...
  • J. Tropp and A. Gilbert, Signal recovery from random measurements ...
  • M. Duarte and R. Baraniuk, Kronecker compressive sensing, IEEE Transactions ...
  • E. Candes, The restricted isometry property and its implications for ...
  • E. Candes and J. Romberg, Sparsity and incoherence in compressive ...
  • J. Haupt and R. Nowak, Signal reconstruction from noisy random ...
  • M. Leinonen and S. Member, Sequential compressed sensing with progressive ...
  • M. Duarte and R. Baraniuk, Kronecker product matrices for compressive ...
  • M. Mahmudimanesh, A. Khelil, and N. Suri, Balanced spatiotemporal compressive ...
  • X. Li, X. Tao, and G. Mao, Unbalanced expander based ...
  • L. Quan, S. Xiao, X. Xue, and C. Lu, Neighbour-aided ...
  • W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, An application-specific protocol ...
  • H. Zheng, J. Li, X. Feng, W. Guo, Z. Chen, ...
  • W. Cai and M. Zhang, Spatio-temporal correlation–based adaptive sampling algorithm ...
  • S. Chen, J. Liu, K. Wang, and M. Wu, A ...
  • S. Mehrjoo and F. Khunjush, Accurate compressive data gathering in ...
  • Y. Zhou, L. Yang, L. Yang, and M. Ni, Novel ...
  • نمایش کامل مراجع