سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Compare Performance of Recovery Algorithms MP, OMP, L1-Norm in Compressive Sensing for Different Measurement and Sparse Spaces

سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 515

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_SPRE-1-3_003

تاریخ نمایه سازی: 23 تیر 1398

چکیده مقاله Compare Performance of Recovery Algorithms MP, OMP, L1-Norm in Compressive Sensing for Different Measurement and Sparse Spaces

In this paper, at first, compressive sensing theory involves introducing measurement matrices to dedicate the signal dimension and so sensing cost reduction, and sparse domain to examine the conditions for the possibility of signal recovering, are explained. In addition, three well known recovery algorithms called Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP), and L1-Norm are briefly introduced. Then, the performance of three mentioned recovery algorithms are compared with respect to the mean square error (MSE) and the result images quality. For this purpose, Gaussian and Bernoulli as the measurement matrices are used, where Haar and Fourier as sparse domains are applied.

کلیدواژه های Compare Performance of Recovery Algorithms MP, OMP, L1-Norm in Compressive Sensing for Different Measurement and Sparse Spaces:

نویسندگان مقاله Compare Performance of Recovery Algorithms MP, OMP, L1-Norm in Compressive Sensing for Different Measurement and Sparse Spaces

Bahareh Davoodi

Electrical Engineering Department South Tehran Branch, Islamic Azad University Tehran, Iran

Sedigheh Ghofrani

Electrical Engineering Department South Tehran Branch, Islamic Azad University Tehran, Iran