Feature reduction of hyperspectral images: Discriminant analysis and the first principal component

سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 429

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-3-1_001

تاریخ نمایه سازی: 19 تیر 1398

چکیده مقاله:

When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has not the limitation of linear discriminant analysis (LDA) in the number of extracted features. In DA-PC1, the dominant structure of distribution is preserved by PC1 and the class separability is increased by DA. The experimental results show the good performance of DA-PC1 compared to some state-of-the-art feature extraction methods.

نویسندگان

Maryam Imani

Faculty of Electrical and Computer Engineering, Tarbiat Modares University

Hassan Ghassemian

Faculty of Electrical and Computer Engineering, Tarbiat Modares University