Feature reduction of hyperspectral images: Discriminant analysis and the first principal component
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 3، شماره: 1
سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 429
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-3-1_001
تاریخ نمایه سازی: 19 تیر 1398
چکیده مقاله:
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has not the limitation of linear discriminant analysis (LDA) in the number of extracted features. In DA-PC1, the dominant structure of distribution is preserved by PC1 and the class separability is increased by DA. The experimental results show the good performance of DA-PC1 compared to some state-of-the-art feature extraction methods.
کلیدواژه ها:
نویسندگان
Maryam Imani
Faculty of Electrical and Computer Engineering, Tarbiat Modares University
Hassan Ghassemian
Faculty of Electrical and Computer Engineering, Tarbiat Modares University