Estimation of parameters of metal-oxide surge arrester models using Big Bang-Big Crunch and Hybrid Big Bang-Big Crunch algorithms
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 4، شماره: 2
سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 391
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-4-2_012
تاریخ نمایه سازی: 19 تیر 1398
چکیده مقاله:
Metal oxide surge arrester accurate modeling and its parameter identification are very important for insulation coordination studies, arrester allocation and system reliability. Since quality and reliability of lightning performance studies can be improved with the more efficient representation of the arresters´ dynamic behavior. In this paper, Big Bang – Big Crunch and Hybrid Big Bang – Big Crunch optimization algorithms are used to selects optimum surge arrester model equivalent circuit parameters values, minimizing the error between the simulated peak residual voltage value and this given by the manufacturer.The proposed algorithms are applied to a 63 kV and 230 kV metal oxide surge arrester. The obtained results show that using this method the maximum percentage error is below 1.5 percent.
کلیدواژه ها:
Surge arresters ، Residual voltage ، Big Bang – Big Crunch algorithm ، Hybrid Big Bang – Big Crunch algorithm
نویسندگان
M.M Abravesh
Department of Electrical Engineering, Hadaf Institute of Higher Education, Sari, Iran
A Sheikholeslami
Department of Electrical Engineering, Noshirvani University of Technology, Babol, Iran
H. Abravesh
Department of Electrical Engineering, Hadaf Institute of Higher Education, Sari, Iran
M. Yazdani asrami
Department of Electrical Engineering, Noshirvani University of Technology, Babol, Iran