Estimation of parameters of metal-oxide surge arrester models using Big Bang-Big Crunch and Hybrid Big Bang-Big Crunch algorithms

سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 391

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-4-2_012

تاریخ نمایه سازی: 19 تیر 1398

چکیده مقاله:

Metal oxide surge arrester accurate modeling and its parameter identification are very important for insulation coordination studies, arrester allocation and system reliability. Since quality and reliability of lightning performance studies can be improved with the more efficient representation of the arresters´ dynamic behavior. In this paper, Big Bang – Big Crunch and Hybrid Big Bang – Big Crunch optimization algorithms are used to selects optimum surge arrester model equivalent circuit parameters values, minimizing the error between the simulated peak residual voltage value and this given by the manufacturer.The proposed algorithms are applied to a 63 kV and 230 kV metal oxide surge arrester. The obtained results show that using this method the maximum percentage error is below 1.5 percent.

کلیدواژه ها:

Surge arresters ، Residual voltage ، Big Bang – Big Crunch algorithm ، Hybrid Big Bang – Big Crunch algorithm

نویسندگان

M.M Abravesh

Department of Electrical Engineering, Hadaf Institute of Higher Education, Sari, Iran

A Sheikholeslami

Department of Electrical Engineering, Noshirvani University of Technology, Babol, Iran

H. Abravesh

Department of Electrical Engineering, Hadaf Institute of Higher Education, Sari, Iran

M. Yazdani asrami

Department of Electrical Engineering, Noshirvani University of Technology, Babol, Iran