Evaluation of loading efficiency of azelaic acid-chitosan particles using artificial neural networks
محل انتشار: مجله علوم نانو، دوره: 3، شماره: 3
سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 425
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_NAMJ-3-3_004
تاریخ نمایه سازی: 18 تیر 1398
چکیده مقاله:
Objective(s): Chitosan, a biodegradable and cationic polysaccharide with increasing applications in biomedicine, possesses many advantages including mucoadhesivity, biocompatibility, and low-immunogenicity. The aim of this study, was investigating the influence of pH, ratio of azelaic acid/chitosan and molecular weight of chitosan on loading efficiency of azelaic acid in chitosan particles. Materials and Methods: A model was generated using artificial neural networks (ANNs) to study interactions between the inputs and their effects on loading of azelaic acid. Results: From the details of the model, pH showed a reverse effect on the loading efficiency. Also, a certain ratio of drug/chitosan (~ 0.7) provided minimum loading efficiency, while molecular weight of chitosan showed no important effect on loading efficiency.Conclusion: In general, pH and drug/chitosan ratio indicated an effect on loading of the drug. pH was the major factor affecting in determining loading efficiency.
کلیدواژه ها:
نویسندگان
Ali Hanafi
Nanobiotechology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
Mehdi Kamali
Nanobiotechology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
Mohammad Hasan Darvishi
Nanobiotechology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
Amir Amani
Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran|Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :