Discovering Important Nodes in Social Networks Using Entropy Measure
محل انتشار: فصلنامه بین المللی وب پژوهی، دوره: 1، شماره: 1
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 650
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJWR-1-1_002
تاریخ نمایه سازی: 18 تیر 1398
چکیده مقاله:
Discovering important nodes in graph data attracted a lot of attention. Social networks are good examples of graph data in which each node represents a person and each edge represents a relationship between two people. There are several methods for the task of discovering important nodes in graph data. In this paper, important people are defined with their roles in society or organization. We propose an efficient method to discover leaders in graph network. For this purpose, both structural feature like entropy and inherent features including from, to, subject and message s time of social networks are used to propose a novel method for discovering important nodes in social networks. The proposed method was applied to Enron dataset and compared with previous methods. The proposed method succeeded to first, discover more important roles in Enron dataset, second, determine CEO as leader of Enron Corporation and third, discover two out of four CEOs among top VIPs.
کلیدواژه ها:
نویسندگان
Vahid Bashiri
Iran University of Science and Technology Tehran, Iran
Hossein Rahmani
Iran University of Science and Technology Tehran, Iran
Hamid Bashiri
Iran University of Science and Technology Tehran, Iran