Predicting tensile strength of rocks from physical properties based on support vector regression optimized by cultural algorithm

سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 351

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMAE-8-3_011

تاریخ نمایه سازی: 18 تیر 1398

چکیده مقاله:

The tensile strength (TS) of rocks is an important parameter in the design of a variety of engineering structures such as the surface and underground mines, dam foundations, types of tunnels and excavations, and oil wells. In addition, the physical properties of a rock are intrinsic characteristics, which influence its mechanical behavior at a fundamental level. In this paper, a new approach combining the support vector regression (SVR) with a cultural algorithm (CA) is presented in order to predict TS of rocks from their physical properties. CA is used to determine the optimal value of the SVR controlling the parameters. A dataset including 29 data points was used in this study, in which 20 data points (70%) were considered for constructing the model and the remaining ones (9 data points) were used to evaluate the degree of accuracy and robustness. The results obtained show that the SVR optimized by the CA model can be successfully used to predict TS.

کلیدواژه ها:

Tensile Strength (TS) of Rocks ، Support Vector Regression (SVR) ، Cultural Algorithm (CA) ، Physical Properties

نویسندگان

H. Fattahi

Department of Mining Engineering, Arak University of Technology, Arak, Iran

N. Babanouri

Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran