Magnetic Resonance Imaging Noise Elimination with Thresholding UsingTeaching–Learning-based Optimization Algorithm
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 503
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ECMECONF01_024
تاریخ نمایه سازی: 28 اردیبهشت 1398
چکیده مقاله:
Noise elimination from images is one of the most important fields of image processing Wavelet-based methods are always associated with Thresholding that are presented togaussian noises elimination. Multiplicity wavelets have properties such as symmetry, highlevelapproximation simultaneously and the image decomposes more accurately and retainsthe edges. In this paper, after magnetic resonance imaging (MRI) decomposition, usingteaching-learning-based optimization (TLBO), appropriate thresholding is used. The TLBOalgorithm is a population-based algorithm inspired by the impact that a teacher has on hislearners. Using the teaching-learning-based optimization algorithm to calculate theappropriate threshold, noise elimination methods increase. Simulation results show that bycalculating the appropriate threshold using TLBO algorithm, multiply wavelet transform isbetter than other methods.
نویسندگان
Seyed Mehdi Moghaddasi
Department of Bioelectric Engineering, SRBIAU, Tehran, Iran
Elnaz Mohseni
Department of Bioelectric Engineering, IAUCTB, Tehran, Iran