مدلهای تصادفی سری زمانی در پیش بینی بارندگی ماهانه (مطالعه موردی: ایستگاه هاشم آباد گرگان)
محل انتشار: مجله آمایش جغرافیایی فضا، دوره: 5، شماره: 17
سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 353
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_GPS-5-17_002
تاریخ نمایه سازی: 11 تیر 1398
چکیده مقاله:
در سالهای اخیر محدودیت منابع آبی جهت تامین آب مورد نیاز کشاورزی و غیر کشاورزی موجب بروز مشکلات زیادی شده است و باران یکی از منابع مهم تامین آب به حساب می آید. بارندگی یکی از مهمترین مولفه های ورودی به سیستم های هیدرولوزیکی محسوب می شود که مطالعه و اندازه گیری آن در اکثر موارد برای مطالعات رواناب، خشکسالی، آبهای زیر زمینی، سیلاب، رسوب و ... لازم و ضروری است. بنابراین پیش بینی و برآورد نزولات جوی برای هر منطقه و آبخیز به عنوان یکی از پارامترهای مهم اقلیمی در استفاده بهینه از منابع آبی محسوب می گردد. یکی از روشهای ارزیابی و پیش بینی بارش، استفاده از سریهای زمانی است. هدف از انجام این تحقیق بررسی مناسب ترین مدل جهت تخمین مجموع بارندگی می باشد. برای این هدف، روشها و مدلهای مختلفی وجود دارند که از آن جمله می توان مدلهای سری زمانی اتو رگرسیو (AR)، میانگین متحرک (MA) و مدلهای تلفیقی اتو رگرسیو با میانگین متحرک و مدلهای فصلی (ARIMA و SARIMA) را برشمرد. در این مقاله عملکرد هر یک از مدلهای یاد شده در برآورد و تخمین مقادیر مجموع بارندگی ماهانه در ایستگاه هاشم آباد گرگان طی دوره 2012- 1983 مورد بررسی قرار گرفت. در جهت شناسایی بهتر مدل بدست آمده، باقیمانده ها و خطاهای پیش بینی مورد بررسی قرار گرفته و ضرایب مدل تخمین زده شدند. نشان داده شد که مدل ساریما ی ((2، 0،1: 2، 1، 3)SARIMA) از سایر مدلهای سری زمانی عملکرد بهتری داشته و روند تغییرات سری زمانی را با خطای کمتری شبیه سازی می کند. واژه های کلیدی: سری های زمانی، بارندگی ، پیش بینی، باقیمانده ها، خطا.
کلیدواژه ها:
نویسندگان
کامل عبداله نژاد
عضو هیات علمی
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :