ارزیابی شوری خاک با تحلیل تصاویر لندست-8 و مشاهدات زمینی (مطالعه موردی: بهشت گمشده استان فارس)
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 533
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_GIRS-10-1_006
تاریخ نمایه سازی: 25 خرداد 1398
چکیده مقاله:
شوری خاک ازجمله مخاطرات محیطی بالقوه محسوب می شود. هدف از این تحقیق یافتن بهترین شاخص و مناسب ترین رابطه جهت برآورد شوری خاک و تهیه نقشه آن با استفاده از داده های دورسنجی است. بدین منظور ابتدا نمونه برداری تصادفی با استفاده از روش تور ماهی و اندازه گیری هدایت الکتریکی خاک سطحی (EC) انجام شد. سپس سطوح حد آستانه (92%، 95% و 98%) روی تصاویر خروجی هر شاخص اعمال شد. از روش های کمترین مربعات رگرسیون شده (LS-fit) و آنالیز مولفه اصلی (PCA) برای کانی های هالیت و ژیپس، همبستگی بین خروجی شاخص ها و داده های زمینی، خوشه بندی و تحلیل عاملی بین مقادیر EC و تصاویر خروجی استفاده شد. جهت انتخاب بهترین مدل حاصل از ترکیب باندهای لندست-8 و میزان شوری، از آزمون هم خطی، آزمون دوربین-واتسون و رگرسیون چندمتغیره پس رو استفاده شد. همچنین جهت ارزیابی رگرسیون چندمتغیره باندهای لندست8، از ضریب کاپای کوهن استفاده شد. کارایی شاخص ها براساس چهار معیار مجذور میانگین مربعات خطا (RMSE)، میانگین انحراف خطا (MBE) و میانگین خطای مطلق (MAE) و ضریب تعیین (R2) ارزیابی شد. نتایج تحلیل عاملی کمترین فاصله را بین EC، شاخص شوری (SI) و شاخص درجه روشنایی (BI) نشان داد. به طوری که شاخص SI با مقدار 0.89 بیشترین همبستگی پیرسون را با EC داشت. در نمودار دندروگرام، شاخص SI با EC در یک خوشه قرار گرفتند و مقدار RMSE، MBE، MAE و R2 برای شاخص SI به ترتیب 0.16، 0.11، 0.12 و 0.76 برآورد شد. شاخص SI نسبت به بقیه شاخص ها و رگرسیون چند متغیره خطی (با ضریب توافق کاپای کوهن 60%)، نتایج بهتری ارائه کرده است.
کلیدواژه ها:
نویسندگان
محمد کاظمی
استادیار مرکز مطالعه و تحقیقات (پژوهشکده) هرمز، دانشگاه هرمزگان
فریبرز محمدی
استادیار گروه کشاورزی، مجتمع آموزش عالی میناب، دانشگاه هرمزگان
علیرضا نفرزادگان
استادیار گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :