Analysis of prediction models for wind energy characteristics, Case study: Karaj, Iran
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 548
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_EES-6-1_004
تاریخ نمایه سازی: 11 خرداد 1398
چکیده مقاله:
Iran is a country completely dependent on fossil fuel resources. In order to obtain a diversity of energy sources, it requires other resources, especially renewable energy. Utilization of wind energy appears to be one of the most efficient ways of achieving sustainable development. The quantification of wind potential is a pivotal and essential initial step while developing strategies for the development of wind energy. This study presents an investigation of the potential of wind power, using two methods—Weibull and Rayleigh—at Karaj, the center of Alborz province of Iran. The wind speed data for a three-hour time interval measured over a 10-year period (2004–2015) was used to calculate and estimate the wind power generation potential. After calculating the factors related to power density and wind energy, it was concluded that data fitting via Weibull distribution was partly better than the Rayleigh distribution function. The RMSE values of Weibull and Rayleigh were respectively 0.018 and 0.013, and R2 values of Weibull and Rayleigh were 0.95 and 0.97 in Karaj for the years 2004–2015. The wind rose charts of Karaj for the 2004–2015 period show that the most prevalent wind direction is NW (North-West). The wind power density obtained indicates the region is not completely suitable for large on-grid wind farms and related investments. But the region can be suitable for off-grid applications such as water pumping and irrigation, lighting, electric fan, battery charging, and, as hybrid, with other power sources.
کلیدواژه ها:
نویسندگان
Hiva Sadeghi
Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
Reza Alimardani
Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
Majid Khanali
Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
Ahmad Omidi
Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :