Application of Master Equation to Multi Well System of CH3OH+HO2
محل انتشار: بیستمین کنگره شیمی ایران
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 304
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IRANCC20_059
تاریخ نمایه سازی: 28 اردیبهشت 1398
چکیده مقاله:
Master equation method is employed to investigate kinetics and dynamics of CH3OH+HO2 system in the presence of N2 as the bath gas. In solving the master equation, the Lennard-Jones potential is used to model collisions between the colliding gases. The reaction mechanism is quantum mechanically explored through lowest doublet potential energy surface (PES) at QCISD(T)/Aug-cc-pVTZ//CBS-QB3 level of theory. Our proposed mechanism over the lowest doublet PES at QCISD(T)/Aug-cc-pVTZ//CBS-QB3 level of theory involves a chemically activated intermediate and three van der Waals complexes. The fractional population of intermediate and products of the title reaction as a function of time is tested to determine the role of the energized intermediate and van der Waals complexes in the kinetics of this reaction. Theoretical bimolecular reaction rate constant is computed by chemical master equation (CME) while one dimensional tunneling through an asymmetric Eckart [1] barrier is applied to study dynamics and kinetics of title reaction. The formation rate constant of the products is in agreement with the reported experimental values in the literature. Master equation predicts the formation of CH2OH + H2O2 and CH3O+H2O2 in the CH3OH+HO2 system as the major products in accordance with the previous studies. Dominance of rate constant for the formation of CH2OH + H2O2 over CH3O+H2O2 is coupled with the fact that the CH3O radical is considerably higher [2] in energy than CH2OH. No sign of temperature and pressure dependence was observed for the title reaction over the range of 300 to 1300 K and 0.1 to 7 atm, respectively
نویسندگان
Seyed Hosein Mousavipour
Department of Chemistry, Faculty of Science, Shiraz University ,Shiraz, Iran
Elham Mazarei
Department of Chemistry, Faculty of Science, Shiraz University ,Shiraz, Iran