Classification of Panchromatic Images Using Ripplet Transfrom and LBP Methods
محل انتشار: چهارمین کنفرانس پردازش سیگنال و سیستمهای هوشمند
سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 482
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SPIS04_048
تاریخ نمایه سازی: 16 اردیبهشت 1398
چکیده مقاله:
Abstract— Today, remote sensing is the most effective method is extracting texture features. Image classification is done in two steps: Image feature extraction and automatic classification of these features. In the feature extraction step, RippletI, RippletII, Curvelet and Ridgelet transforms were used. These transforms yield appropriate results in identifying borders and edges of the figures. LBP method is simple got accurate method for identifying index class distribution. Hence, using staking method (combine ripplet transform and LBP methods) results in higher number of features vectors and improves the classification accuracy as much as 5%. SVM classify is used in classification step. Experimental results has been performed two databases (south Tehran and brotza).
نویسندگان