Cozero containment preserving maps between certain Banach modules

سال انتشار: 1397
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 353

فایل این مقاله در 7 صفحه با فرمت PDF و WORD قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICESIT01_201

تاریخ نمایه سازی: 6 بهمن 1397

چکیده مقاله:

A linear map T: A→B between spaces of functions A and B is called disjointness preserving if the equation coz(f)∩coz(g)=∅ implies coz(Tf)∩coz(Tg)=∅ and is called cozero containment preserving if the containment coz(f)⊂coz(g) implies coz(Tf)⊂coz(Tg), for all f,g∈A. We first generalize the definition of disjointness preserving maps to Banach module cases and then we show that every bijective disjointness preserving map T: A→X is automatically continuous and has a disjointness preserving inverse, where A is a unital commutative semisimple regular Banach algebra satisfying the Ditkin’s condition and X is a unital hyper semisimple Banach left module over a unital commutative Banach algebra. Finally, we prove that for each bijection cozero containment preserving map T: X→A, under certain conditions, T,T^(-1)are disjointness preserving and T^(-1) is continuous.

نویسندگان

Lida Mousavi

Department of mathematics, Yadegar-e-Imam Khomeini(RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran