Optimal water productivity of winter wheat in an arid region
سال انتشار: 1388
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,577
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICWR01_133
تاریخ نمایه سازی: 15 آذر 1388
چکیده مقاله:
Irrigation needs to be scheduled properly for winter wheat, the main food crop in Iran where the water resources are limited. In the present study, a field experiment was conducted for three growing seasons to study the effects of seasonal water use on yield attributes and water productivity indices of wheat in a semi-arid region in Iran. Yield attributes were affected by deficit irrigation treatments although they are not statistically different in all cases. The grain and straw yields were significantly affected by treatments. The water productivity indices were influenced by irrigation strategies and deficit irrigation effectively boosted productivity of irrigation water (WI). The optimal WI was obtained at a seasonal irrigation water of 156 mm. WI ranged between 0.93 and 2.28 kg m-3. The data generated here suggest that under deficit irrigation, maximum water productivity (WET) would be achieved in 270 mm seasonal water use. The results indicated that wheat water productivity may be substantially improved as a result of the limited supplemental irrigation strategies under limited water resources. The findings will be helpful in policy planning regarding irrigation management for maximizing net financial returns from limited land and water resources in the study area.
کلیدواژه ها:
نویسندگان
A. Montazar
Department of Irrigation and Drainage Engineering, Campus of Aburieyhan, University of Tehran, P.O. Box ۱۱۳۶۵-۴۱۱۷, Pakdasht, Iran
M. Mohseni
Department of Irrigation and Drainage Engineering, Campus of Aburieyhan, University of Tehran, P.O. Box ۱۱۳۶۵-۴۱۱۷, Pakdasht, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :