A New approach to a rigidity problem of 2-step nilmanifolds
محل انتشار: کنفرانس پژوهش های نوین در علوم و مهندسی
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 421
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NRSECONF02_008
تاریخ نمایه سازی: 21 اردیبهشت 1397
چکیده مقاله:
We study a problem about isometric compact 2-step nilmanifolds M/Γ using some information on their geodesic flows, where M is a simply connected 2-step nilpotent Lie group with a left invariant metric and Γ is a cocompact discrete subgroup of isometries of M . Among various works concerning this problem, we consider an algebraic aspect of it. In fact, isometry groups of simply connected Riemannian manifolds can be characterized in a purely algebraic way, namely by normalizers. So, suitable factorization of normalizers and expression of a vector bundle as an associated fiber bundle to a principal bundle, lead us to a general framework, namely groupoids. In this way, drawing upon advanced ingredients of Lie groupoids, normal subgroupoid systems and other notions, not only an answer in some sense to our rigidity problem has been given, but also the dependence between normalizers, automorphisms and specially almost inner automorphisms, has been clarified.
کلیدواژه ها:
نویسندگان
Hamid-Reza Fanaï
Associate Professor of Mathemaics Department of Mathematics, Shatif University of Technology, Tehran, Iran
Atefeh Hasan-Zadeh
Assistant Professor of Applied Mathematics Fouman Faculty of Engineering, College of Engineering, University of Tehran, Iran