Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 525

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-30-9_005

تاریخ نمایه سازی: 23 دی 1396

چکیده مقاله:

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modified Ant Colony Optimization (ACO) algorithm is applied on filter phase. ACO has been approved to be a suitable solution in many difficult problems with graph search space such as feature selection. Choosing minimal data reductions among the subsets of features with first and second maximum accuracies is the main contribution of this work. To verify the efficiency of our approach, experiments are performed on 10 well-known UCI data sets. Analysis of the experimental results demonstrates that the proposed approach is able to satisfy two conflicting constraints of feature selection, increasing the classification accuracy as well as decreasing the length of the reduced subsets of features

نویسندگان

A Moaref

Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

V Sattari-Naeini

Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran