Augmented Downhill Simplex a Modified Heuristic Optimization Method

سال انتشار: 1391
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 421

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JCR-5-2_001

تاریخ نمایه سازی: 23 دی 1396

چکیده مقاله:

Augmented Downhill Simplex Method (ADSM) is introduced here, that is a heuristic combination of Downhill Simplex Method (DSM) with Random Search algorithm. In fact, DSM is an interpretable nonlinear local optimization method. However, it is a local exploitation algorithm; so, it can be trapped in a local minimum. In contrast, random search is a global exploration, but less efficient. Here, random search is considered as a global exploration operator in combination with DSM as a local exploitation method. Thus, presented algorithm is a derivative-free, fast, simple and nonlinear optimization method that is easy to be implemented numerically. Efficiency and reliability of the presented algorithm are compared with several other optimization methods, namely traditional downhill simplex, random search and steepest descent. Simulations verify the merits of the proposed method.

کلیدواژه ها:

Augmented Downhill Simplex Method (ADSM) ، Downhill Simplex ، global optimization ، global exploration

نویسندگان

Mohsen Jalaeian-F

Department of Electrical Engineering, Center of Excellence on Soft Computing and Intelligent Information Processing (SCIIP), Ferdowsi University of Mashhad, Mashhad, Iran