Increasing discrimination of network structure models by MCDEA at presence of undesirable output
محل انتشار: نهمین کنفرانس ملی تحلیل پوششی داده ها
سال انتشار: 1396
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 554
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
DEA09_058
تاریخ نمایه سازی: 8 آذر 1396
چکیده مقاله:
In many real world DMUs have a two – stage network scenarios, which have not only inputs and outputs, but also intermediate measures and undesirable factors that exist in-between the two-stage operations. However, we would argue that existing two-stage DEA models use an unrealistic weighting system. The multiple criteria DEA can be used to improve discriminating power of classical DEA method and overcomes weak discrimination between DMUs. In this paper we use a modified multiple criteria two-stage DEA model which yields more realistic weights for the inputs and outputs and thus has better discrimination power than traditional two-stage DEA models at presence of undesirable outputs.
کلیدواژه ها:
Multiple criteria DEA ، Two-stage DEA. Undesirable factor
نویسندگان
Monir Zoriehhabib
Soofian Branch, Islamic Azad University, Iran
Mahnaz Maghbuli
Hadishahr Branch, Islamic Azad University, Iran
Mehdi Eyni
Payame Noor University, Iran