Numerical Study of the Effect of Reynolds Number on Thermal and Hydrodynamic Parameters of Turbulent Flow Mixed Convection Heat Transfer in a Horizontal Tube

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 346

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NRIME03_121

تاریخ نمایه سازی: 19 خرداد 1396

چکیده مقاله:

In this paper, the effect of Reynolds number on thermal and hydrodynamic parameters of mixed convection heat transfer of the Al2O3/water nanofluid turbulent flow was numerically investigated in a horizontal copper tube under wall non-uniform heat flux by using two-phase mixture model. The upper half of the tube was under thermal flux and its lower half was insulated. The governing equations was elliptical in this study and the finite volume method and the second-order upstream difference scheme were used for their discretization. The relation between pressure and velocity was established by using SIMPLEC algorithm. After reviewing the results, it was found that convective heat transfer coefficient and shear stress increase with the increase of Reynolds number. Also, in a constant volume fraction, convective heat transfer coefficient increases with increasing Reynolds number from Re= 4000 to Re=5000 equivalent to 12 percent and Re= 5000 to Re=6000 equivalent to 14 percent.

نویسندگان

Farhad Vahidinia

Department of Mechanical Engineering, University of Zabol, Zabol, Iran

Mohadeseh Miri

Department of Mechanical Engineering, University of Zabol, Zabol, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. A. Minea, (2013). Effect of microtube length _ heat ...
  • V. Bianco, O. Manca, S. Nardini, (2014). Performance analysis of ...
  • M. Kaminski, R. L. Ossowski, (2014). Prediction of the effective ...
  • A.A. Rabienataj Darzi, M. Farhadi, K. Sedighi, Sh. Aallahyari, M. ...
  • M. Hejazian, M. Keshavarz Moraveji. (2013). A comparative analysis of ...
  • M. Saberia, M. Kalbasia, A. Alipourzadeb, (2013). Numerical Study of ...
  • V. Bianco, O. Manca, S. Nardini, (2011). Numerical investigation on ...
  • Manninen, M., Taivassalo, V., Kallio, S., (1996). On the Mixture ...
  • Schiller, L., Naumann, A., (1935). A drag coefficient correlation, Z. ...
  • B.E. Launder, D.B. Spalding, (1972). Lectures in Mathematical Models of ...
  • A.M. Hussein, K. V. Sharma, R. A. Bakar, K. Kadirgama, ...
  • Pak BC, Cho YI. (1998). Hydrodynamic and heat transfer study ...
  • Choi, S.U.S., Zhang ZG, Keblinski P. (2004). Nanofluids. Encyclop Nanosci ...
  • Buongiorno J. (2006). Convective transport in nanofluids. ASME J Heat ...
  • C.H. Chon., K.D. Kihm., S. P. Lee. and S.U.S. Choi, ...
  • N. Masoumi., N. Sohrabi. and A. Behzadmehr, (2009). A new ...
  • K. Khanafer, K. Vafai, M. Lightstone, (2003). B uoyancy-driven heat ...
  • V. Gnielinski, (1976). New equations for heat and mass transfer ...
  • E. _ Haghighi, A. T. Utomo, M. Ghanbarpour, A. I.T. ...
  • S. Torii, (2010). Turbulent Het Transfer Behavior of Nanofluid ina ...
  • نمایش کامل مراجع