Using Semantic PSO Clustering Approach for Automatic Text Summarization
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 632
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
COMCONF03_165
تاریخ نمایه سازی: 6 اردیبهشت 1396
چکیده مقاله:
Sentence Clustering is often used as a first step in document summarization to find redundant information. Number of clusters, type and quality of them can have important roles in the automatic text summarization. Also the similarity criteria have effective roles in coverage of principal and significant sections of a text. In this research, it is tried to use a new approach in the text summarization problem based on PSO (Particle Swarm Optimization). Similarity of sentences is calculated based on semantic correlations and it is contrary to similarity based on word co-occurrences. In this research, number of clusters is not considered as a predefined parameter and it is tried to find the optimal cluster numbers. The proposed system is evaluated on a large dataset of sports news. The results show that the output of this system is more efficient and accurate than similar approaches.
کلیدواژه ها:
نویسندگان
Ali Bazghandi
School of Computer Engineering and IT Shahrood University of Technology Shahrood, Iran
Mehdi Bazghandi
Information Technology Unit Organization of Public Libraries Mashhad, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :