Multi-Task Joint Spatial Pyramid Matching with Dynamic Coefficients for image classification
محل انتشار: نهمین کنفرانس ماشین بینایی و پردازش تصویر ایران
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 515
نسخه کامل مقاله در کنفرانس ارائه نشده است و در دسترس نیست.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMVIP09_061
تاریخ نمایه سازی: 6 اسفند 1395
چکیده مقاله:
recognition considered as a necessary part in many computer vision applications. Recently, Sparse coding methods which based on representing a sparse feature from image, show remarkable results on several image recognition benchmarks. However, the precision obtained by these methods are not sufficient. Such a problem arises where there are a few number of training images available. So using multiple features and multi-task dictionaries seems to be essential to attain better results. In this paper, we use multi-task joint sparse representation but unlike previous works [4] which used constant coefficients for all class, we apply dynamic coefficients which computed separately for each class to combine these sparse features efficiently. In other word, we calculate the importance of each feature for each class separately. It causes the features to be used more effectively and better appropriate for each class. We used PSO (Particle swarm optimization) algorithm to obtain these dynamic coefficients. To the best of our knowledge, our experimental results on Caltech-101 and Caltech-256 databases surpass in accuracy from the best published results to date on the same databases
کلیدواژه ها:
نویسندگان
Mohammah hossein hajigholam
Department of Electrical Engineering Amirkabir University of Technology, AUT Tehran, Iran
Abolghasem Asadollah Raie
Department of Electrical Engineering Amirkabir University of Technology,AUT Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :