A high-throughput texture classification approach using a new descriptor
محل انتشار: نهمین کنفرانس ماشین بینایی و پردازش تصویر ایران
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 677
نسخه کامل مقاله در کنفرانس ارائه نشده است و در دسترس نیست.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMVIP09_033
تاریخ نمایه سازی: 6 اسفند 1395
چکیده مقاله:
In this paper, we propose a simple construction approach (FR: features' value range) as a high performance texture descriptor. The FR works based on local textural information. We show the throughput of texture classification can be improved using the FR. In the classification process, the FR is considered as a pre-classifier and selects a few candidate categories for an input texture. Using the proposed approach, comparison time of the main classifier is reduced. To evaluate of the FR in different situations, some criteria have been proposed. To implement of the proposed approach, the texture descriptors such as local binary pattern (LBP), Haralick, and circular Gabor filter (CGF) are considered. The experimental results are done by implementation of the FR approach on the Scene-13, Outex and UIUC data sets. The results show the throughput of texture classifiers improve up to 14.85×.
کلیدواژه ها:
نویسندگان
Alireza Akoushideh
Electrical Engineering Department University of Shahid Beheshti G. C. Tehran, Iran
Babak Maybodi
Electrical Engineering Department University of Shahid Beheshti G. C. Tehran, Iran
Asadollah Shahbahrami
Computer Engineering Department University of Guilan Rasht, Iran