Energy-aware method in connected asymmetrical point coverage wireless sensor network using ant colony algorithm
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 734
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
KBEI02_162
تاریخ نمایه سازی: 5 بهمن 1395
چکیده مقاله:
in recent years Development of sensor networks and interest in their use has made many researches to focus on these networks. There are several limitations in the sensors and they result in desirable research on evolutionary algorithms, which have been formed inspired by the nature or human communities. One of the evolutionary algorithms is ant colony optimization algorithm, which has shown very good properties in convergence speed and high accuracy for solving big problems and achieving optimal point for different objective functions. In this paper, the optimal choice of active sensors and a path to send data is performed by ant colony optimization algorithm. The study tries to select optimally in order to reduce energy consumption and extend the lifetime in a point coverage network using this method. Comparison results of the proposed algorithm with other methods show that the proposed method has better performance than the other algorithms. The reason for this superiority is to select Monitoring sensors and data transmission path to the sink simultaneously by ant colony optimization algorithm. This can be effective in increasing lifetime and reducing energy consumption.
کلیدواژه ها:
نویسندگان
Seyed Javad Rezaei
Department of Computer Engineering, University of Shiraz, Shiraz, Iran
Zahra Rafieian Bahabadi
Department of Computer Engineering, Azad Islamic University Babol branch Babol, Iran
Javad Vahidi
Department of Computer Engineering, Iran University of Science and Technology Tehran, Iran
Ali Shokouhi Rostami
Department of Computer Engineering,Iran University of Science and Technology Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :