A new algorithm for mining frequent patterns in Can Tree

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 714

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

KBEI02_042

تاریخ نمایه سازی: 5 بهمن 1395

چکیده مقاله:

Association Rule Mining is concerned with the search for relationships between item-sets based on co-occurrence of patterns. Since transactional databases are being updated all the time and there are always data being added or deleted, so Incremental Association Rule Mining is very importance. Many methods have been presented so far for incremental frequent patterns mining, one of these methods is the frequent patterns mining base on the CanTree (CANonical-order TREE). Related works on CanTree, didn't discuss about extraction of frequent patterns from the tree and it has only been suggested that the mining method would be similar to FP-growth. In this paper, a new method is presented for mining CanTree, and it is evaluated to show its improvement over the FP-growth method that mine FP tree. The evaluation results have demonstrated that performance of the presented algorithm is better than the FP-growth algorithm at high minimum support thresholds and for future work can try to improve it for lower minimum support threshold.

نویسندگان

Masome Sadat Hoseini

Department of Software Engineering, Faculty of Computer Engineering, Najafabad branch, Islamic Azad University, Najafabad, Esfahan,Iran

Mohammad Nadimi Shahraki

Department of Software Engineering, Faculty of Computer Engineering, Najafabad branch, Islamic Azad University, Najafabad, Esfahan, Iran

Behzad Soleimani Neysiani

Department of Software Engineering Faculty of Computer & Electrical Engineering University of Kashan Kashan, Esfahan, Iran