A Hybrid Resource Allocation for Robust Scheduling ThroughCombination of Neural Networks, Critical Path Method andNSGA-II
محل انتشار: دومین کنفرانس بین المللی مدیریت و علوم انسانی
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 608
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMHCONF02_057
تاریخ نمایه سازی: 5 بهمن 1395
چکیده مقاله:
In many scheduling problems with controllable processing times,commonly two general resource consumption function is used, linear andconvex, and the effect of the starting time of activity not considered.However, both of these functions have some assumption fails such as theeffect of the environmental condition from starting time of activity andquality of assigned resources. Inspired by these perceptions, we providea hybrid model for robust project scheduling in which each activity’sprocessing time is a function of its starting time and quality and quantityof its allocated resource. The objective is optimizing sequence ofactivities respect to time and cost of project with considering limits ofavailable resources. To achieve this goal, in the proposed method, NeuralNetworks is combined with Critical Path Method for calculation ofactivity’s processing time, then NSGA-II is used for optimization. Forevaluation of model capability, a problem is optimized with proposedmethod. The objective function is to minimize the makespan and totalcompletion cost of project. The results show that the model has factorsof robust scheduling
کلیدواژه ها:
نویسندگان
Mostafa Khanzadi
Department of civil engineering, iran university of science and technology
Amirhossein Movahedian Attar
Department of civil engineering, iran university of science and technology
Morteza Bagherpour
Department of industrial engineering, iran university of science and technology
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :