A Hybrid Resource Allocation for Robust Scheduling ThroughCombination of Neural Networks, Critical Path Method andNSGA-II

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 608

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICMHCONF02_057

تاریخ نمایه سازی: 5 بهمن 1395

چکیده مقاله:

In many scheduling problems with controllable processing times,commonly two general resource consumption function is used, linear andconvex, and the effect of the starting time of activity not considered.However, both of these functions have some assumption fails such as theeffect of the environmental condition from starting time of activity andquality of assigned resources. Inspired by these perceptions, we providea hybrid model for robust project scheduling in which each activity’sprocessing time is a function of its starting time and quality and quantityof its allocated resource. The objective is optimizing sequence ofactivities respect to time and cost of project with considering limits ofavailable resources. To achieve this goal, in the proposed method, NeuralNetworks is combined with Critical Path Method for calculation ofactivity’s processing time, then NSGA-II is used for optimization. Forevaluation of model capability, a problem is optimized with proposedmethod. The objective function is to minimize the makespan and totalcompletion cost of project. The results show that the model has factorsof robust scheduling

نویسندگان

Mostafa Khanzadi

Department of civil engineering, iran university of science and technology

Amirhossein Movahedian Attar

Department of civil engineering, iran university of science and technology

Morteza Bagherpour

Department of industrial engineering, iran university of science and technology

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Al-Fawzan MA, Haouari M (2005) A bi-objective model for robust ...
  • Baker JE (1987) Reducing Bias and Inefficiency in the Selection ...
  • Bansal JC, Singh P, Deep K, et al (eds) (2013) ...
  • Chao L, Skibniewski MJ (1994) Estimating Construction Productivity: Neural- Network- ...
  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A ...
  • Ezeldin AS, Sharara LM (2006) Neural Networks for Estimating the ...
  • Ghoddousi P, Eshtehardian E, Jooybanpour S, Javanmardi A (2013) Multi-mode ...
  • Gong M, Pan L, Song T, et al (eds) (2015) ...
  • Jang H, Kim K, Kim J, Kim J (2013) Labour ...
  • Khan Z (2005) Modeling and parameter ranking of construction labor ...
  • Koulamas C, Gupta S, Kyparisis GJ (2010) A unified analysis ...
  • Kumar M. A, R. S, Kumar TVS (eds) (2012) Proceedings ...
  • Leyvand Y, Shabtay D, Steiner G (2010) A unified approach ...
  • Oron D (2015) Scheduling controllable processing time jobs in a ...
  • Panigrahi BK, Das S, Suganthan PN, Nanda PK (eds) (2012) ...
  • Shabtay D (2004) Single and two-resource allocation algorithms for minimizing ...
  • Shabtay D, Kaspi M (2006b) Minimizing the makespan in open-shop ...
  • Shabtay D, Kaspi M (2006a) Parallel machine scheduling with a ...
  • Shabtay D, Steiner G (2007a) A survey of scheduling with ...
  • Shabtay D, Steiner G (2007b) The single-machine earlines s-tardiness scheduling ...
  • Sharma N, Anupama KR (2011) On the use of NSGA-II ...
  • Sharma N, Rao A, Dewan A, Safdari M (2008) Rate ...
  • Sonmez R, Rowings JE (1998) Construction Labor Productivity Modeling with ...
  • Tabari MMR, Soltani J (2012) Multi-Obj ective Optimal Model for ...
  • Wang J-B, Wang M-Z (2012) Single-machine scheduling to minimize total ...
  • Yin Y, Cheng TCE, Cheng S-R, Wu C-C (2013) Single-machine ...
  • Zhao C, Hsu C, Wu W, et al (2016) Note ...
  • Appendix I. Sample of Khan recorded data (Khan 2005) I ...
  • نمایش کامل مراجع