Using Long-Term Speech Information to Improve a Voice Activity Detector based on the Statistical Likelihood Ratio Test
محل انتشار: چهاردهمین کنفرانس مهندسی برق ایران
سال انتشار: 1385
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,270
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEE14_292
تاریخ نمایه سازی: 25 تیر 1387
چکیده مقاله:
In this paper the characteristics of a voice activity detector (VAD) based on the statistical likelihood ratio (LR) are investigated. The application of long-term speech information to the VAD decision parameter has been tested & found to be beneficial for the VAD robustness. Also, the noise estimation procedure used in other papers has been further improved by the application of a dynamic time varying smoothing factor. The proposed algorithm resulted in significant improvements in terms of speech/nonspeech detection accuracy over the other existing methods, specifically at low SNRs, at the cost of some delay. The proposed algorithm is compared to different standard methods, including AMR1,
AMR2 and AFE as well as the VAD based on the smoothed likelihood ratio that is reported to have advantages over the existing standards. Objective tests conducted, based on speech/non-speech discrimination, indicated the performance superiority of the proposed VAD over the other methods mentioned above.
کلیدواژه ها:
نویسندگان
A. Esmaeili
Electrical Engineering Department, Amirkabir University of Technology
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :