RASMAP: An Efficient Heuristic Application Mapping Algorithm for Network-on-Chips
محل انتشار: هشتمین کنفرانس بین المللی فناوری اطلاعات ودانش
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 755
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICIKT08_027
تاریخ نمایه سازی: 5 بهمن 1395
چکیده مقاله:
This paper proposes and evaluates a performance efficient application mapping algorithm for mesh-based NoCs. The proposed algorithm first prioritizes tasks of the given application graph based on their total in/out communication traffic. Then a task with the most communication traffic is selected and mapped onto the center part of the mesh topology i.e., a core with the most available communication channels. After that, repeatedly, the next task is selected in a way that has the most communications with the already mapped tasks. Such a task is mapped onto the core which its degree is proportional to the tasks link degree. The proposed method is evaluated by Noxim which is a cycle-accurate NoC simulator in terms of communication cost i.e., to total number of packets traversed through the network to complete the application graph. The proposed method is compared with several previously proposed mapping algorithms including NMAP, CMAP, LMAP, PSMAP, and CASTNET. Comparisons show that the proposed method offers better performance and consumes lower energy in the network.
کلیدواژه ها:
نویسندگان
Rasoul Seidi Piri
Member of Young Researchers and Elite Club ,Bourojerd Branch, Islamic Azad university Bourojerd,Iran
Ahmad Patooghy
Department of Computer Engineering, Iran University of Science & Technology Tehran, Iran
Sima Afsharpour
School of Computer Science, Institute for Research in Fundamental Sciences (IPM) Tehran, Iran
Mahdi Fazeli
Department of Computer Engineering, Iran University of Science & Technology Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :