An Adaptive Algorithm for Managing Gradient Topology in Peer-to-Peer networks
محل انتشار: هشتمین کنفرانس بین المللی فناوری اطلاعات ودانش
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 885
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICIKT08_015
تاریخ نمایه سازی: 5 بهمن 1395
چکیده مقاله:
Super-peer network is a type of peer-to-peer networks. In a super-peer network, a super-peer is a peer that has more ability than other peers have and is responsible for some of the tasks of network management. Since different peers vary in terms of capability, selecting a super-peer is a challenge problem. Gradient topology is a type of super-peer networks. Because of dynamicity of peers, adaptive methods are important for managing gradient topology. A problem of the existing management algorithms of gradient topology is that they are not sensitive to joining and leaving the peers. This problem becomes more challenging when a malicious peer frequently joins and leaves the network. The proposed algorithm being sensitive to removal of super peers, using learning automata, selects the new super-peers in an adaptive manner. According to the simulation results, the proposed algorithm can compete with the existing algorithms.
کلیدواژه ها:
نویسندگان
Sara Fathipour Deiman
Faculty of Computer and Information Technology Engineering, Sama technical and vocational training college TehranBranch (Tehran), Islamic Azad University, Tehran, Iran
Ali Mohammad Saghiri
Soft Computing Laboratory, Computer Engineering and Information Technology Department, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran, Iran
Mohammad Reza Meybodi
Soft Computing Laboratory, Computer Engineering and Information Technology Department, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :