Identifying Stocks Leaderby Complex Network Analysis
محل انتشار: کنفرانس بین المللی پژوهش در علوم و مهندسی
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 604
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICRSIE01_554
تاریخ نمایه سازی: 25 آذر 1395
چکیده مقاله:
Financial markets are a complex system of individuals and institutions, tools and procedures that get savers and borrowers to gather in one place (Basely S. and Brigham E.F., 1999). Predict the trend of stocks is the most concern of investors. Different models of data mining will use to analyze stock behavior and identify future trends, and the results can affect on companies and investor’s strategic decisions. Over a century, the people are used the virtual network for implicit references to the social systems with complex interrelationships among all scales ranging from interpersonal to internationally relationships. In this paper the best common effective indicator identified by data panel model to create a correlation network using the stock data at different times from the Tehran Stock Exchange for April 2010 to April 2014. Result showed that return could be the best indicator, and as created network was scale-free so the modularity depicted the communities could conduct us to identify stocks leader
کلیدواژه ها:
نویسندگان
Alireza Kheyrkhah
PhD Candidate, Department of Management and Economic, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
Fereydoon Rahnamay Roodposhti
Full Prof. Department of Management and Economic, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
Mohammad Ali Afshar Kazemi
Associate Prof. Department of Industrial Management, Tehran Central Branch, Islamic Azad University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :