Breast Cancer Detection from FNA Using SVM and RBF Classifier
سال انتشار: 1386
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,082
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
FJCFIS01_220
تاریخ نمایه سازی: 14 خرداد 1387
چکیده مقاله:
In this paper, we consider the benefits of applying support vector machines (SVMs) and radial basis function (RBF) for breast cancer detection. The Wisconsin diagnosis breast cancer (WDBC) dataset is used in the classification experiments; the dataset was generated from fine needle aspiration (FNA) samples through image processing. The 1-norm C-SVM (L1-SVM) and 2-norm C-SVM (L2-SVM) are applied, for which the grid search based on gradient descent based on validation error estimate (GDVEE) are developed to improve the detection accuracy.Experimental results demonstrate that SVM classifiers with the proposed automatic parameter tuning systems and the RBF classifier can be used as one of most efficient tools for breast cancer detection, with the detection accuracy up to 98%.
کلیدواژه ها:
Breast cancer detection ، Parameter tuning ، Radial basis function networks ، Support vector machines
نویسندگان
Majid Iranpour
Computer Department , Iran University science & Technology
Sanaz Almassi
Computer Department , Iran University science & Technology
Morteza Analoui
Computer Department , Iran University science & Technology