Accelerating of Modified Policy Iteration in Probabilistic Model Checking
محل انتشار: کنفرانس بین المللی یافته های نوین پژوهشی در علوم،مهندسی و فناوری با محوریت پژوھشھای نیاز محور
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 616
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICMRS01_370
تاریخ نمایه سازی: 8 آبان 1395
چکیده مقاله:
Markov Decision Processes (MDPs) are used to model both non-deterministic and probabilistic systems. Probabilistic model checking is an approach for verifying quantitative properties of probabilistic systems that are modeled by MDPs. Value and Policy Iteration and modified version of them are well-known approaches for computing a wide range of probabilistic properties. This paper tries to improve the performance of modified policy iteration. Our approach is to use some information of the related model for approximating a good value for the number of iterations for each policy and improving this approximation in next modifications of policies.
کلیدواژه ها:
نویسندگان
Mohammadsadegh Mohagheghi
Departement of Computer Science, Vali-e-asr Rafsanjan University
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :