Multi-objective PSO algorithm for a bi-criteria permutation hybrid flow shop scheduling problem with sequence dependent setup times

سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 636

فایل این مقاله در 16 صفحه با فرمت PDF و WORD قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

INDUSTRIAL01_022

تاریخ نمایه سازی: 21 شهریور 1395

چکیده مقاله:

This paper deals with the problem of sequence-dependent setup time hybrid flowshop scheduling with the objectives of minimizing the weighted mean completion time and weighted mean tardiness. Because a flow shop scheduling problem has been proved to be NP-hard, an effective multi-objective particle swarm optimization (MOPSO) is used for finding Pareto-optimal frontier of the problem. To generate an initial swarm NEH heuristic and EDD heuristic are incorporated into the initialization of population. Results show that NEH method generates better initial swarms than EDD method. To prove the efficiency of the proposed algorithm, various test problems are solved and the reliability of the proposed algorithm, based on some comparison metrics, is compared with multi-objective genetic algorithms, i.e. NSGA2, SPEA2 and PESA2. The computational tests show that MOPSO provides better solutions than NSGA2, SPEA2 and PESA2 especially for the large-sized problems.

کلیدواژه ها:

MOPSO algorithm - hybrid flow shop - NEH heuristic - weighted mean completion time -weighted mean tardiness - Pareto optimal frontier

نویسندگان

Reyhaneh Sadat Mirkarimi

Khaje Nasir Toosi University of Technology

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Junqing Fan, Lihua Zhao, Lin Du, and YoulianZheng (2010) Cro ...
  • Martin Josef Geiger (2011) Decision support for multi-objective flow shop ...
  • F. Jolai , H. Asefi , M. Rabiee, P. Ramezani ...
  • Chang shengZhang , JiaxuNing , D antongOuyang (2010) A hybrid ...
  • F. Choong , S. Pho n-Amnuaisuk, M.Y. Alias (2011) Metaheuristic ...
  • Hongcheng Liu, Liang Gao, Quanke Pan (2011) A hybrid particle ...
  • Desheng Li, Na Deng (2012) Solving Permutation Flow Shop Scheduling ...
  • Yin-Yann Chen , Chen-Yang Cheng , Li-Chih Wang, Tzu-Li Chen ...
  • B. Naderi, Sh. Gohari, M. Yazdani(20 14)Hybrid flexible flowshop problems: ...
  • S edi gheArabameri , Nasser Salmasi (2013) Minimization of weighted ...
  • D. Hajinejad , N. Salmasi , R. Mokhtari (2011) A ...
  • Bo Liu, LingWang , Yi-Hui Jin (2008) An effective hybrid ...
  • Bin-Bin Li, Ling Wang, and Bo Liu (2008) An Effective ...
  • Victor Fern andez-Viagas , Jose M. Framinan (2015) NEH-based heuristics ...
  • Pinedo, M. (1995). Scheduling theory, algorithms, and systems (second ed.).Englewood ...
  • Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: ...
  • Mostaghim, S., &Teich, J. (2004). Covering Pareto-optimal fronts by subswarms ...
  • Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Multi-obj ective ...
  • F. Jolai , R. Tavakkoli -Moghaddam , M. Rabiee and ...
  • R. Tav akko li-Moghaddam , M. Azarkish, A. Sadeghnej ad-B ...
  • Carlos A. Coello Coello, Gregorio Toscano Pulido, and Maximino Salazar ...
  • نمایش کامل مراجع