Persian off-line signature recognition with structural and rotation invariant features using by one-against-all SVMclassifier
سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 424
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JACR-4-2_008
تاریخ نمایه سازی: 16 شهریور 1395
چکیده مقاله:
The problem of automatic signature recognition has received little attention incomparison with the problem of signature verification, despite its potentialapplications for many business processes and can be used effectively in paperlessoffice projects. This paper presents model-based off-line signature recognition withrotation invariant features. Non-linear rotation of signature patterns is one of themajor difficulties to be solved in this problem. The proposed system is designedbased on support vector machines (SVM) classifier technique and rotation invariantstructure feature to tackle the problem. Our designed system consists of threestages: the first is preprocessing stage, the second is feature extraction stage and thelast is SVM classifier stage. Experimental results demonstrated that the proposedmethods were effective to improve recognition accuracy.
کلیدواژه ها:
نویسندگان
Mohammad Mohammadzade
Computer Engineering Department, Sari Branch, Islamic Azad University, Sari, Iran
Alireza Ghonodi
Computer Engineering Department, Sari Branch, Islamic Azad University, Sari, Iran