A Hybrid Algorithm for Task scheduling Based on Ant Colony Optimization and Local Neighborhood Search

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 562

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEASCONF01_095

تاریخ نمایه سازی: 9 مرداد 1395

چکیده مقاله:

The advent of cloud computing as a new model of service provisioning in distributed systems, encourages researchers to investigate its benefits and drawbacks in executing scientific applications such as workflows. One of the crucial issues in this environment is related to task scheduling. Task scheduling is an NP-hard optimization problem and many meta-heuristic algorithms have been proposed to solve it. This paper presents an optimized hybrid algorithm for task scheduling based on ant colony optimization and local neighborhood search to minimize both total executing time and cost. The proposed approach can be implemented on both dependent and independent tasks. By virtue of comparing proposed approach with the other algorithm, the experiment results show the hybrid algorithm not only has better scheduling performance but also runs faster than the other algorithm in a large scale. In addition, the experimental results show that the proposed algorithm can substantially achieve both minimal cost and minimal time.

نویسندگان

ParisaSadat Shojaei

Affiliation: Department of Information Technology, Payame Noor University (PNU), P.O. Box, ۱۹۳۹۵-۳۶۹۷ Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abdullah M and Othman M. 2014. Simulated Annealing Approach To ...
  • Hwang K., Dongarra J. J. and Fox G. C. 2012. ...
  • Huang J., Wu K., Leong L. K., Ma S., and ...
  • Liu H., Xu D. and Miao H. K. 2011. Ant ...
  • Pandey S.. Wu L., Mayura Guru S., and Buyya R. ...
  • نمایش کامل مراجع