CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in a double-layered microchannel heat sink
سال انتشار: 1395
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,114
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CHCONF02_546
تاریخ نمایه سازی: 9 مرداد 1395
چکیده مقاله:
The present work deals with the numerical study of Alumina/water nanofluid flow and heat transfer in a double-layered microchannel heat sink. The governing differential equations are solved using finite volume method in OpenFOAM (version 2.4.0) which is an open-source package for computational fluid dynamics. An extension of the available solver, chtMultiRegionSimpleFoam with the assumption of constant thermophysical properties was employed. The numerical solver was validated against experimental data extracted from the previous experimental studies. Nanofluid hydrodynamic and thermal performance is compared with pure water. Moreover, thermal resistance and pressure drop of single-layered and double-layered heat sinks are compared.Results of this study show that when water is used as coolant, the thermal resistance of the two-layered microchannel heat sink is almost the same as that for a single layer, but the pressure drop reduces with a two-layered microchannel heat sink. Furthermore, Al2O3/water nanofluids have shown reduction in thermal resistance of a two-layered microchannel heat sink, as compared to pure water, however, the decrease in thermal resistance is not significant, and the pressure drop also increased with the use of Al2O3/water nanofluid.
کلیدواژه ها:
نویسندگان
Hossein Hadi Najafabadi
Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
Mostafa Keshavarz Moraveji
Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :