Improved Adaptive Neuro-Fuzzy Inference System with Imperialist Competitive Learning Algorithm (ICA-ANFIS)
محل انتشار: هفتمین کنفرانس ملی مهندسی برق و الکترونیک ایران
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 764
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEEE07_423
تاریخ نمایه سازی: 19 اردیبهشت 1395
چکیده مقاله:
This paper introduces a new type of adaptive Neuro-fuzzy inference system, denoted as ICA-ANFIS (Adaptive Neuro-fuzzy Inference System with Imperialist Competitive Learning Algorithm). The previous learning algorithms of ANFIS emphasized on gradient based methods or least squares (LS) based methods, but gradient computations are very computationally and difficult in each stage, also gradient based algorithms may be trapped into local optimum. This paper introduces a new hybrid learning algorithm based on imperialist competitive algorithm (ICA) for training the antecedent part and least square estimation (LSE) method for optimizing the conclusion part of ANFIS. This hybrid method is free of derivation and solves the trouble of falling in a local optimum in the gradient based algorithm for training the antecedent part. The proposed ICA-ANFIS system is applied for prediction of Mackey-Glass chaotic time series. Analysis of the obtained results and comparisons with recent and old studies demonstrates the promising performance of this new approach.
کلیدواژه ها:
نویسندگان
Majid Mohammadi
Department of Computer Engineering Shahid Bahonar University of Kerman
Maysam Behmanesh
Department of Computer Engineering Shahid Bahonar University of Kerman
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :