Two Estimations of the united solution set to the Interval Unilateral Quadratic Matrix Equations
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 677
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NSOECE03_110
تاریخ نمایه سازی: 28 اسفند 1394
چکیده مقاله:
Introducing the interval unilateral quadratic matrix equation, A.X^2+B.X+C=0, we describe some analytical results on its AE-solution sets in which A, B and C are known real interval matrices, while X is the unknown matrix. Then, one sufficient condition for solvability (non emptiness of the united solution set) of the united solution set is given. Two direct methods for estimation of the united solution set of this interval unilateral quadratic matrix equation are proposed. Suggested techniques are based on sensitivity analysis as well as nonlinear programming. Finally, these methods are tested on a number of numerical examples and their results are compared to each other.
کلیدواژه ها:
Interval unilateral quadratic matrix equation ، interval arithmetic ، united solution set ، nonlinear programming ، sensitivity analysis
نویسندگان
Tayyebe Haqiri
Ph.D. Student, Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
Mahmoud Mohseni Moghadam
Professor in Applied Mathematics, Mathematics Department, Islamic Azad University, Kerman Branch, Kerman, Iran
Federic Poloni
Assistant Professor, Department of Computer Science, University of Pisa, Pisa, Italy
Azim Rivaz
Assistant Professor, Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran,
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :