Statistical Language Model Adaptation for Persian Speech Recognition

سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 531

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJOCIT-2-4_002

تاریخ نمایه سازی: 16 فروردین 1395

چکیده مقاله:

Language models are important in various applications especially in speech recognition.Extracting n-gram statistics is a prevalent approach for statistical language modeling. But Traditional n-gram language models suffer from insufficient long-distance information and have crucial dependency on the training corpus. The aim of language model adaptation is to exploit specific, albeit limited, knowledge about the recognition task to compensate for this mismatch. This paper presentsan overview of the major adaptation approaches proposed to deal with this issue and we implement these approaches for Persian continuous speech recognition

کلیدواژه ها:

Speech Recognition ، Statistical Language Model Adaptation ، Corpus

نویسندگان

Seyed Mahdi Hoseini

Computer Department of Shafagh University Tonekabon Iran

Ahmad Akbari Azirani

Computer Department of Iran University of Science and Technology Tehran Iran