Statistical Language Model Adaptation for Persian Speech Recognition
سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 531
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJOCIT-2-4_002
تاریخ نمایه سازی: 16 فروردین 1395
چکیده مقاله:
Language models are important in various applications especially in speech recognition.Extracting n-gram statistics is a prevalent approach for statistical language modeling. But Traditional n-gram language models suffer from insufficient long-distance information and have crucial dependency on the training corpus. The aim of language model adaptation is to exploit specific, albeit limited, knowledge about the recognition task to compensate for this mismatch. This paper presentsan overview of the major adaptation approaches proposed to deal with this issue and we implement these approaches for Persian continuous speech recognition
کلیدواژه ها:
نویسندگان
Seyed Mahdi Hoseini
Computer Department of Shafagh University Tonekabon Iran
Ahmad Akbari Azirani
Computer Department of Iran University of Science and Technology Tehran Iran