GPU Implementation of Real-Time Biologically Inspired Face Detection using CUDA
سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 881
فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMEC-3-8_003
تاریخ نمایه سازی: 16 فروردین 1395
چکیده مقاله:
In this paper massively parallel real-time face detection based on a visual attention and cortex-like mechanism of cognitive vision system is presented. As a first step, we use saliency map model to select salient face regions and HMAX C1 model to extract features from salient input image and then apply mixture of expert neural network to classify multi-view faces from nonface images. The saliency map model is a complex concept for bottom-up attention selection that includes many processes to find face regions in a visual science. Parallel real-time implementation on Graphics Processing Unit (GPU) provides a solution for this kind of computationally intensive image processing. By implementing saliency map and HMAX C1 model on a multi-GPU platform using CUDA programming with memory bandwidth, we achieve good performance compared to recent CPU. Running on NVIDIA Geforce 8800 (GTX) graphics card at resolution 640×480 detection rate of 97% is achieved. In addition, we evaluate our results using a height speed camera with other parallel methods on face detection application.
کلیدواژه ها:
نویسندگان
Zeinab Farhoudi
Department of Computer Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran,
Ali Broumandnia
Department of Computer engineering South Tehran branch, Islamic Azad University, Tehran, Iran,
Elham Askary
Department of Computer Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran,
Sara Motamed
Department of Computer Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran,