ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

Image Noise Reduction Using a Wavelet Thresholding Method Based on Fuzzy Clustering

تعداد صفحات: 12 | تعداد نمایش خلاصه: 1700 | نظرات: 0
سال انتشار: 1385
کد COI مقاله: ICMVIP04_033
زبان مقاله: انگلیسی
(فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.

برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید.در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.

لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید.

برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 12 صفحه است به صورت فایل PDF در اختیار داشته باشید.

قیمت این مقاله : 0 تومان

آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Image Noise Reduction Using a Wavelet Thresholding Method Based on Fuzzy Clustering

Hadi Sadoghi Yazdi - Faculty of Engineering, Tarbiat Moallem University of Sabzevar, Sabzevar, Iran
Mojtaba Lotfizad - Department of Electrical Engineering, Tarbiat Modarres University

چکیده مقاله:

In this paper, a new method is presented for reducing the image noise by wavelet transform. Wavelet thresholding is a standard method of reducing the signal noise in which the small coefficients are replace by zero and the big ones are either remain unchanged (hard thresholding) or reduced to the level of the threshold (soft thresholding). In the proposed method, for the first time, fuzzy kmeans clustering in each sub-band is used for choosing the threshold in soft thresholding method. Using fuzzy clustering, the coefficients in each sub-band are divided into three clusters, and then the noise cluster is obtained regarding the decomposition level and the maximum coefficient in each level. The upper and lower limit of the noisy cluster is an appropriate threshold for soft thresholding. This method is more efficient for r educing Gaussian and salt and pepper noises in comparison to methods that model the noise. In other words, the proposed method is not dependent on statistical noise or data driven is the manifest feature of the proposed approach relative to other methods and the threshold is selected based on type of images without each assumption on probability density function of noise. The experiments performed on basis images, show a higher performance of the proposed algorithm relative to the statistical method and the generalized cross validation method.

کلیدواژه ها:

Wavelet thresholding, fuzzy clustering, image noise reduction, statistical noise model

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/44270/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Sadoghi Yazdi, Hadi و Lotfizad, Mojtaba,1385,Image Noise Reduction Using a Wavelet Thresholding Method Based on Fuzzy Clustering,چهارمین کنفرانس ماشین بینایی و پردازش تصویر,مشهد,,,https://civilica.com/doc/44270

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1385, Sadoghi Yazdi, Hadi؛ Mojtaba Lotfizad)
برای بار دوم به بعد: (1385, Sadoghi Yazdi؛ Lotfizad)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود ممقالهقاله لینک شده اند :

  • C. S. Burrus, R. A. Gopinath, H. Guo, _ Introducti ...
  • J. Portilla, V. Strela, M. J. Wainnwright, E. P. Simocelli, ...
  • S. G. Chang, B. Yu and M. Vetterli, «Adaptive Wavelet ...
  • D. L. Donoho, Johnstone, "Ideal Spatial Adaptation via Wavelet Shrinkage, ...
  • S. G. Chang, B. Yu and M. Vetterli, *Spatially Adaptive ...
  • Clustering Strategies Using _ Norm Distances, IEEE Trans. On Fuzzy ...
  • R. A. DeVore and B. J. Lucier, ،Fast wavelet techniques ...
  • _ «Adapting to unknown smoothness via wavelet shrinkage, Journal of ...
  • A. Chambolle, R. A. DeVore, N. Lee, and B. J. ...
  • مدیریت اطلاعات پژوهشی

    صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

    پشتیبانی