Co-evolutionary Multi-Sensor Placement in computer Vision

محل انتشار: همایش ژئوماتیک 82
سال انتشار: 1382
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,190

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

GEO82_23

تاریخ نمایه سازی: 25 آذر 1384

چکیده مقاله:

the complesities associated with the sensor placement for the purpose of extraction of 3D coordinates of the objects have made the automatic solution of this problem rather ompractical. These complexities are due to the fact that sensor positions, attitude and parameters are needed to be optimized in a network of imaging stations constructed around the object with a view to obtaining optimum accuracu for the final values of the extracted 3D coordinates. In this paper for the problem of Automatic Multi-Sensor Placement, we propose a solution based on evolutionary algorithms using simultaneous incorporation of CGA (co-evolutionary genetic algorithm) and LTFE (long-time fitness evaluation) techniques. The CGA technique for this particular problem seems to have provided faster convergence and reliablity factors as compared with the traditional GA approaches. Regarding the nature of our problem, the first population is considered to be the vision constraints and the second population is taken to be the appropriate objective functions of the cost and measurement accuracy. Since in this problem, similar to constaint satisfication problems (CSP), several cmplex constraints are to be satisfied, the LTFE technique is also utilized so that with a minimum computational cost, more complex constaints are satisfied with more attention. The preliminary experimints with the proposed approach indicate that there are not serious limitations as regards the type of sensors, constraints and objective functions in our approach. Besides, the approach shows high flesibility when environmental conditions are changed as it incorporates the AI concepts.

نویسندگان

Mohammad Saadat seresht

Tehran University, Faculty of Engineering, Dept. of Geomatic

Farhad Samadzadegan

Tehran University, Faculty of Engineering, Dept. of Geomatic

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • D. Fritsch and F. Crosilla. First order design strategies for ...
  • S. Mason. Heuristic reasoning strategy for automated sensor placement. ...
  • Photo grammetric Engineering and Remote Sensing, 63(9):1093{1 102, September 1997. ...
  • S.O. Mason and A. Gruen. Automatic sensor placement for accurate ...
  • G. Olague and R. Mohr. Optimal Camera Placement for Accurate ...
  • S. Sakane, R. Niepold, T. Sato, and T. Shirai. Illumination ...
  • S. Sakane and T. Sato. Automatic planning of light source ...
  • S. Yi, R.M. Haralick, and L.G. Shapiro. Optimal sensor and ...
  • C.K. Cowan and P.D. Kovesi. Automatic sensor placemen t from ...
  • _ Tarabanis, R.Y. Tsai, and P.K. Allen. Automated sensor planning ...
  • G.H. Tarbox and S.N. Gottschlich. Planning for complete sensor coverage ...
  • D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning. ...
  • J. Paredis, Co- evolutionary Constraint Satisfaction. In Proceedings of the ...
  • نمایش کامل مراجع