Combination of PSO Algorithm and Naive Bayesian Classification for Parkinson Disease Diagnosis
سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 610
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ACSIJ-4-4_017
تاریخ نمایه سازی: 7 آذر 1394
چکیده مقاله:
Parkinson is a neurological disease which quickly affects human’s motor organs. Early diagnosis of this disease is very important for its prevention. Using optimum training data andomitting noisy training data will increase the classification accuracy. In this paper, a new model based on the combination ofPSO algorithm and Naive Bayesian Classification has been presented for diagnosing the Parkinson disease, in which optimum training data are selected by PSO algorithm and Naive Bayesian Classification. In this paper, according to the obtained results, Parkinson disease diagnosis accuracy has been 97.95% using the presented method, which is indicative of the superiority of this method to the previous models of Parkinson disease diagnosis
کلیدواژه ها:
نویسندگان
Navid Khozein Ghanad
Islamic Azad university Of Mashhad, Faculty of Engineering, Department Of Computer, Mashhad, Iran
Saheb Ahmadi
Islamic Azad university Of Mashhad, Faculty of Engineering, Department Of Computer, Mashhad, Iran