Application of Data-Driven Models in Rainfall-Runoff Modelling via Principal Component Analysis
محل انتشار: کنفرانس بین المللی علوم مهندسی، هنر و حقوق
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,004
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICESAL01_021
تاریخ نمایه سازی: 22 مهر 1394
چکیده مقاله:
In this study, the performance of two kinds of statistical neural networks was studied in rainfall-runoff simulation. Two mentioned neural networks included Radial Based Function (RBF) and General Regression Neural Network (GRNN). In order to compare the obtained results with an indicator, Multi-Layer Perceptron (MLP) neural network, which is well known as an efficient method was applied. In order to simulate the rainfall-runoff process, theprecipitation data of 10 stations in Karkheh basin, located in Iran, and discharge data of AbdolKhan station, which is the outlet point of the basin, were employed. Since with respect to a three-step delay for inputs in order to create a rainfall-runoff model, the number of outputs were 30, using the principal component analysis, three initial principal components that fulfilled about 90% of total data variance, were used. The results showed that GRNN method has had the best performance, and subsequently, MLP and RBF has ranked as second and third rate.
کلیدواژه ها:
نویسندگان
Amir Reze Nemati
Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
Mahmoud Zakeri Niri
corresponding author Department of Civil Engineering, Islamshahr Branch, Islamic Azad University, Tehran, Iran
Saber Moazami Goudarzi
Department of Civil Engineering, Islamshahr Branch, Islamic Azad University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :