Intelligent simulation of river process using ANN and ANFIS

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,078

فایل این مقاله در 14 صفحه با فرمت PDF و WORD قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NSOECE01_038

تاریخ نمایه سازی: 1 مهر 1394

چکیده مقاله:

In the present study, artificial neural networks (ANNs), neuro-fuzzy (NF), multi linear regression (MLR) and conventional sediment rating curve (SRC) models are considered for time series modeling of suspended sediment concentration (SSC) in rivers. As for the artificial intelligence systems, feed forward back propagation (FFBP) method and Sugeno inference system are used for ANNs and NF models, respectively. The models are trained using daily river discharge and SSC data belonging to Tezerjan gauging station in Yazd province in Iran. Obtained results demonstrate that ANN and NF models are in good agreement with the observed SSC values; while they depict better results than MLR and SRC methods. For example, the determination coefficient is 0.616 for NF model, while it is 0.443, 0.216 and 0.181 for ANN, MLR and SRC models, respectively.

نویسندگان

Mojtaba keykhosravi

Graduate Student, Young Researchers Club, Computer Engineering Department, Islamic Azad University, Sirjan, Iran,

Mansour Rajabi

PhD Student, Department of Water Resource, Agriculture and Natural Resources University, Sari, Iran,

Saeed Rajabi

Master Student, Department of Electrical and Control Engineering, Tarbiat Modares University, Tehran, Iran,

Mahin Jokar

Graduate, Department of Physical Chemistry, Islamic Azad University Firooz Abad, Iran,

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Altun H, Bilgil A, Fidan BC. Treatment of mul ti-dimensionl ...
  • ASCE Task Committee on the application of ANNs in hydrology. ...
  • Agil M, Kita I, Yano A, Nishiyama S. Analysis and ...
  • Achite, M., and Ouillon, S. 2007. Suspended sediment transport in ...
  • Bray, M. and Han, D. (2004). Identification of support vector ...
  • Brown M, Harris C. Neuro-fuzzy adaptive modelling and control. Upper ...
  • Bhattacharya B, Price R, Solomatine D Data-driven modelling in the ...
  • Brown M, Harris C. Neuro-fuzzy adaptive modelling and control. Upper ...
  • Dastorani, M., S. Huge and A. Talebi. 2012. Suspended sediment ...
  • Engelund F, Hansen E. A monograph _ sediment transport in ...
  • _ Gericke, A. and Venohre, M. (2012). Improving the estimation ...
  • Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are ...
  • Haykin S. Neural Networks: a comprehensive foundation. New York: MacMillan; ...
  • Jain SK. Development of integrated sediment rating curves using Anns. ...
  • Jang J-SR, Sun C-T, Mizutani E. Neuro-fuzzy and soft computing: ...
  • Jang J-SR, Sun C-T, Mizutani E. Neuro-fuzzy and soft computing: ...
  • Jang J-SR, Sun C-T. Neuro-fuzzy modelling and control. Proc IEEE ...
  • Jang J-SR, Sun C-T, Mizutani E. Neuro-fuzzy and soft computing: ...
  • Kisi, O. (2010). River suspended sediment concentration modeling using a ...
  • Kisi, O., Ozkan, C. and Akay, B. (2012). Modeling discharge- ...
  • Kisi O, Karahan E, Sen Z. River suspended sediment modelling ...
  • Kisi O, Haktanir T, Ardiclioglu M, Ozturk O, Yalcin E, ...
  • Lohani AK, Goel NK, Bhatia KK. Deriving stage-di S charge-s ...
  • Mirbagheri SA, Tanji KK, Krone RB. Sediment ch aracterization and ...
  • Mirbagheri SA, Tanji KK, Krone RB. Simulation of suspended sediment ...
  • Masters T Practical neural network recipes in C++. San Diego ...
  • Nash JE, Sutcliffe JV. River flow forecasting through conceptual models ...
  • Nagy HM, Watanabe K, Hirano M. Prediction of load concentration ...
  • Rajaee, T. (2011). Wavelet and ANN combination model for prediction ...
  • 9.Raghuwanshi N, Singh R, Reddy L. Runoff and sediment yield ...
  • Sadeghi, H. 2005. Development of sediment rating curve equations for ...
  • Schmitz JE, Zemp RJ, Mendes MJ. Artificial neural networks for ...
  • Tokar AS, Johnson P A. Rainfall runoff modelling using artificial ...
  • Toffaleti FB. Definitive computations of sand discharge in rivers. J ...
  • Toloei, S., D. Hossenzadeh, M. GHorbani, A. Fakherifard and F. ...
  • Tayfur G, Ozdemir S, Singh VP. Fuzzy logic algorithm for ...
  • Zhu YM, Lu XX, Zhou Y. Suspended sediment flux modeling ...
  • نمایش کامل مراجع