Evaluation of aggregate types and adhesive materials effect on the microsurfacing skid resistance
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 858
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICSAU02_1408
تاریخ نمایه سازی: 16 خرداد 1394
چکیده مقاله:
Considering that one of the crucial duties of microsurfacing is skid correction therefore there is some important factors to achieve this purpose such aggregate type, its specifications and gradation. Also type of adhesive materials and its amount can effects on microsurfacing skid resistance. This study presents a laboratory investigation of aggregate type and adhesive materials and their relationship to microsurfacing pavement skid resistance. The method of this study is developed for the evaluation of microsurfacing pavement resistance against skid. This method relies on ASTM E 303, using the British Pendulum Test. The test results report in British Pendulum Number (BPN). The verification of this method was achieved through measuring the skid resistance of specimens constructed in laboratory using two different aggregate sources and two adhesive materials. The results show that the river aggregates are more resistant than mountain aggregates against skid. Also, the results of resin specimens are more desirable than the bitumen specimens. The skid resistance was found to be related not only to aggregate type, but also to the type and percent of adhesive materials within an aggregate sample.
کلیدواژه ها:
نویسندگان
Mohammad ShafaghatLonbar
Department of Civil Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
Seyyed Masoud Nasrazadani
Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
Ali Shafaghat
Department of Chemistry, Khalkhal Branch, Islamic Azad University, Khalkhal, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :