A New Approach to Find Optimum Architecture of ANN and Tuning It's Weights Using Krill-Herd Algorithm
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 931
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IINC02_024
تاریخ نمایه سازی: 25 فروردین 1394
چکیده مقاله:
Data classification is an important branch of data mining and there are different methods for its implementation. Neural networks are one of the best ways for classification inmachine learning. Structure and weights of neural network are most important in their precision. In recent years, due to thedefects in gradient-based search algorithms in neural network training algorithms, metahuristic algorithms have been of interest for researchers. Due to the random nature of thesealgorithms, the defects of trapped in local minimum can be largely resolved but Since training the weights of the neuralnetwork was done on specific network architecture, there were no guarantees for selecting the best architecture. So, in ourwork, krill herd algorithm was used to improve the structureaddition of network weights. Task of optimizing the network structure was on the three components of this algorithm(movement induced by the other krill, random diffusion, and foraging motion) along with a genetic operator; also dimensionsof krill showed the desired structure for the neural network. In this paper, the performance of the proposed method was tested on five UCI data sets and the results compared with the previousmethods showed that the classification accuracy of the proposed method was considerably higher and the mean square error was low.
کلیدواژه ها:
نویسندگان
Nazanin Sadeghi Lari
Department of Electrical, Computer and IT Engineering,Qazvin Branch, Islamic Azad University, Qazvin, Iran
Mohammad Saniee Abadeh
Department of Electrical and Computer Engineering Tarbiat Modares University (TMU)Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :