Discovery Of The Triadic Frequent Closed Patterns Based On Hidden Markov Model In Folksonomy

سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 962

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IINC02_009

تاریخ نمایه سازی: 25 فروردین 1394

چکیده مقاله:

With rise of web 2.0, its associated user-centric applications have attracted a lot of users. Folksonomy plays an important role in these systems, which is made of labeling data.Discovery triadic frequent closed patterns is an important tool in knowledge discovery in folksonomy. The huge volume of data andthe number of dimensions in these systems, including users, tags and resources are challenging for data mining. In this paper, amethod for discovering all triadic frequent closed patterns based on Hidden Markov Model in folksonomy is proposed. By extracting useful data from dataset, the proposed methodemprises to build Hidden Markov Model on the two dimensions, then with inference from created hidden model discover triadicfrequent closed patterns through applying third dimension on the results. In fact, extracting useful data in the first step and usingviterbi based algorithm, for inference, regularly are pruneddataset and are causes for triadic frequent closed patterns to be discovered more quickly. Testing on a real data set taken from Del.icio.us website and comparing the results with the same algorithm in the field of folksonomy called Trias show that the proposed method in terms of the time, can extract all triadic frequent closed patterns more effectively

نویسندگان

Maryam Fahimi

Department of Computer Engineering Mashhad Branch, Islamic Azad University Mashhad, Iran

Majid Vafaei Jahan

Department of Computer Engineering Mashhad Branch, Islamic Azad University Mashhad, Iran

Masood Niazi Torshiz

Department of Computer Engineering Mashhad Branch, Islamic Azad University Mashhad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • R.J-aschke, A. Hotho, C. Schmitz, B. Ganter, G. Stumme, " ...
  • _ _ _ _ _ Services and Agents _ the ...
  • Y. Ustunbas, S. G. Oguducu, _ Rec ommendation Model for ...
  • _ _ _ _ _ _ International Conference on Data ...
  • _ _ _ Conference _ Very Large , Morgan Kaufmann ...
  • _ _ _ _ _ pp. 236-245, 2003 ...
  • نمایش کامل مراجع