Metamorphic Virus Detection Based on Bayesian Network

سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 829

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IINC02_007

تاریخ نمایه سازی: 25 فروردین 1394

چکیده مقاله:

Metamorphic virus detection is one of the most challenging tasks of antivirus software and the most difficult ones are among known viruses. In thisarticle we have used Bayesian network to recognize these kinds of viruses. The body of these viruses is made of assembly codes. At first opcodes are extracted as 1-gram from virus body, these opcodes are known as the characteristics of Bayesian network, extracting these characteristics reduce dramatically the Computational complexity, memory and time used. After that, it’s time to draw the Bayesian network, before drawing,Bayesian network should be training. Bayesian network learning is known as a NP-hard problem because of this utilizing exploratory research has proven that it can behelpful in a lot of cases; in which we have used hill climbing algorithm. This method is compared todifferent Hidden Markov Model and the methods ofrole-opcode are also compared. Experimental result shows that, utilizing Bayesian network, the accuracy of virus detection increase, and other classify are not superlative that Bayesian network.

نویسندگان

Neda Shabani

Department of Computer Engineering Mashhad Branch, Islamic Azad University Mashhad, Iran

Majid Vafaei Jahan

Department of Computer Engineering Mashhad Branch, Islamic Azad University Mashhad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Tabish, S. M., Shafiq, M. Z., & Farooq, M. , ...
  • Bilar, D. , "OpCodes as predictor for malware", International Journal ...
  • Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., ...
  • Santos, I., Brezo, F., Nieves, J., Penya, Y. K., & ...
  • Bringas, I. S. _ Using opcode sequences in single-class learning ...
  • Santos, I., Brezo, F., Ugarte-Pedrero, X., & Bringas, P. G. ...
  • Yassin Dehghan naeri, "Detection metamorphic virus by Hidden Markov Model", ...
  • Roberts, J. -M, VirusShare, Retrieved from http ://virusshare .com/, 2013, ...
  • Rascagneres, P, malware.lu, Retrieved from ...
  • http ://www .malware _ lu/pages/co mpany.html , 2013 ...
  • Wood, D .VirusSign. Retrieved from ...
  • http ://www. virussign .com/downloas .html x86 instruction listings, Juuary 2014 ...
  • kaspersky lab, Retrieved from ...
  • Remco R. Bouckaert , "Bayesian Network Classifiers in Weka for ...
  • W. Wong, "Analysis and detection of metamorphic computer viruses", Master's ...
  • Z. Ghezelbiglo, M. Vafaei Jalhan, "Role-Opcode Vs. Opcode in Maleware ...
  • Jose A. Gamer _ Juan L. Mate. , Jose M. ...
  • Antonino Freno, " Bayesian Networks", antonino .freno@inria.fr ...
  • Majid Vafaei Jahan, "an introduction to computer modeling and simulation", ...
  • نمایش کامل مراجع